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Abstract

Flows containing steady or nearly steady strong shocks in parts of

the flow field, and unsteady turbulence with shocklets on other parts

of the flow field are difficult to capture accurately and efficiently em-

ploying the same numerical scheme even under the multiblock grid

or adaptive grid refinement framework. On one hand, sixth-order or

higher shock-capturing methods are appropriate for unsteady turbu-

lence with shocklets. On the other hand, lower order shock-capturing

methods are more effective for strong steady shocks in terms of con-

vergence. In order to minimize the shortcomings of low order and

high order shock-capturing schemes for the subject flows, a multi-

block overlapping grid with different orders of accuracy on different

blocks is proposed. Test cases to illustrate the performance of the new

solver are included.
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1 Motivation

For nearly two decades, second and third-order shock-capturing schemes em-
ploying time-marching to the steady state have enjoyed much success in
simulating many transonic, supersonic and hypersonic steady aeronautical
flows containing strong shocks. In the presence of mixed steady and un-
steady multiscale viscous flows, low order time-accurate methods are not
effective in accurately simulating, e.g., unsteady turbulent fluctuation con-
taining shocklets. At the same time, high order schemes with good unsteady
shock-capturing capability suffer from the inability to converge to the proper
steady shocks effectively. Attempts to improve the convergence rate of high
order methods to strong steady shocks involve order reduction or added nu-
merical dissipation of the scheme in the vicinity of the shocks, thus degrading
the true order of the scheme in other parts of the flow.

Although extreme grid refinement can be accomplished on the unsteady
turbulence part of the flow field, increases in instability and stiffness of the
overall computations are inevitable. A method to effectively overcome these
difficulties for mixed steady and unsteady viscous flows is a multiblock over-
lapping grid with a different order of numerical scheme on different block.
Stable SBP (summation-by-parts) energy norm numerical boundary proce-
dures for high order central schemes are employed at physical boundaries as
well as at multiblock overlapping boundaries. Lagrangian interpolations are
used to interpolate grid point values among the block overlapping regions.
The logic in coding the resulting 3-D code is more complex as it deals with
flexible grid stencil on multiblock interfaces. The following presents a de-
scription of the approach with some test cases to validate the solver without
all the relevant physics included in the model. The next step is to apply
the solver to practical applications. An important application for the pro-
posed solver is to simulate blunt body space vehicles in hypersonic speed
with strong steady or nearly steady bow shocks and possible complex tur-
bulence/shocklet interaction near the wake region. Another application is in
numerical modeling of the Heliosphere.

2 Overlapping grid hierarchies

Overlapping grids have a long history in computational fluid dynamics (CFD).
For basic descriptions see [1].
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Figure 1: Three grids overlapping grids. The fine grid(red) and curvilinear
grid(green) would be given higher priority than the coarse grid(black).

Fig. 2 shows a detail of an overlapping grid system where three component
grids meet. In regions of overlap, one grid, the grid with highest priority,
carries the computed solution and parts of other grids in the same region
are cut away. In Fig. 2 the coarsest grid(black) would normally be given the
lowest priority, and the parts of it that are covered by the fine grid (red) or the
curvilinear grid (green) would be unused. The boundaries of the uncovered
regions of the grids obtain values by interpolation from other grids. The
interpolation is always two way. At the interface between two grids, say
G1 and G2, the boundary of G1 interpolates from G2 and the boundary of
G2 interpolates from G1. The interpolation can be implicit or explicit. In
explicit interpolation, the points in G2 that are used in the interpolation
stencil for computing values at the boundary of G1 are not allowed to be
interpolation points. In implicit interpolation, interpolation points on one
grid are allowed to be part of the interpolation stencil from the other grid.
Implicit interpolation allows a smaller size overlap between the grids, but it
is necessary to solve an algebraic system of equations for the interpolation
values. Fig. 2 depicts explicit and implicit interpolation for a one dimensional
example.

For a discretization with finite difference operators of stencil width 2s+1,
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Figure 2: Interpolation between grids in one space dimension. Explicit (top)
and implicit (bottom) interpolation.

we use s layers of interpolation points at the interpolation boundaries of the
grids. No other boundary conditions except for interpolation are needed. It
would have been possible to use summation by parts boundary operators to
decrease the number of layers of interpolation points, but here we only use
summation by parts operators at the real physical boundaries.

Overlapping grid generators such as Xcog [4] or Ogen [3], cut away under-
lying grids and determine which points needs to be interpolated from other
component grids. They output interpolation information in the form of a
table. The user inputs the stencil width of the difference scheme he wants
to use and the stencil with of the interpolation stencil he wants to use. For
example, three layers of interpolation points are needed with a sixth order
difference operator.

We use Lagrangian interpolation between component grids. If the point
(i, j, k) in grid g is interpolated from grid gf with a stencil whose lower left
corner is (if , jf , kf ), and the location of (i, j, k) in the parameter space of gf

is (ci, cj, ck), then the r + 1th order interpolation formula is

u
(g)
i,j,k =

r
∑

l=0

r
∑

m=0

r
∑

n=0

Ll(ci)Lm(cj)Ln(ck)u
(gf )

if+l,jf+m,kf+n (1)

where u
(g)
i,j,k is the solution on grid g at grid point (i, j, k). The standard
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Lagrange polynomial basis is

Ll(ξ) =
r
∏

p=0
p6=l

ξ − xif+p

xif+l − xif+p

,

and similarly for the j and k directions.
The overlapping grid system enables us to use different numerical schemes

on different component grids. The stencil width input to the grid generator is
the maximum width over all discretizations that potentially will be used for
any component grid. Higher order schemes require higher order interpolation
between component grids. The interpolation stencil width, i.e., r be in (1), in
the overlapping grid system must be chosen to permit interpolation of high
enough order.

3 Data structure and message passing

For parallel execution using message passing, we distribute each component
grid evenly on the total number of processors available. This gives perfect
load balancing, but the amount of communication is larger than optimal.
However, because we use explicit time stepping, the communication cost is
still only a small fraction of the total computation time. The approach is most
efficient when the composite grid is made up of a few large component grids,
because of low computation to communication ratio when component grids
with very few grid points are distributed on a large number of processors.

Information about interpolation arrives from the grid generation program
in a table with entry (i, g, if , gf , cf ) for each interpolation point. The meaning
is that the point with index i in grid g, should interpolate from grid gf , with
an interpolation stencil that has point if as lower left corner and cf is the
location of point i in the curvilinear coordinate system gf .

The whole interpolation table is read into each processor and split into
one “get from” table representing interpolation points owned by the processor
and one “give to” table representing values that needs to be interpolated in
the processor. The entries in the “get from” table are (i, g, p) meaning that
point i in grid g is an interpolation point that should get its value from
processor p. The entries in the “give to” table are (if , gf , cf , p), meaning
that a value located at parameter values cf in grid gf should be interpolated
with point if as lower left corner and then sent to processor p.
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The “get from” and “give to” tables are built in the same order as the
original non-parallel table. Therefore, if the interpolated values are sent in
the order of the “give to” table from processor p they will be received in the
right order in processor q. For example, if the first entry in processor ps “give
to” table says that the interpolated value should be sent to processor q, then
the first entry with processor p in the “get from” table in processor q is the
corresponding point.

The tables are represented in such a way that all communication that
is associated with the interpolation is done with a single call to the MPI
function MPI Alltoallv.

4 Equations and numerical method

We solve the compressible Navier-Stokes equations in non-dimensional units,

ρt + div ρu = 0

(ρu)t + div(ρuuT + pI) = div τ (2)

et + divu(e+ p) = div(τ :D) + div q

The dependent variables are the density, ρ, the velocity (column) vector, u,
and the total energy e. Superscript T denotes matrix transpose, and I is the
3×3 identity matrix. p denotes the pressure and the 3×3 matrix D is the
symmetric part of the velocity gradient,

Dij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

The viscous tensor is is given by

τ =
α(T )

Re
(−2

3
divuI + 2D)

and the heat conduction is given by

q =
α(T )γ

RePr(γ − 1)
∇p

ρ
.

The tensor product of two matrices is defined as

A : B =
3
∑

i=1

3
∑

j=1

ai,jbi,j.
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Re denotes the Reynolds number, Pr is the Prandtl number, γ is the cp to cv

ratio, and α(T ) is the viscosity temperature dependency. The temperature
is computed as

T =
Mp

Rρ
.

The constants M and R are the molar mass of the gas and the universal gas
constant respectively. In the computations below, we will give a free stream
state (denoted by subscript ∞) and determine M/R by M/R = T∞ρ∞/p∞.
For viscous computations, we will use Sutherland’s law,

α(T ) =

(

T

T∞

)1.5
T∞ + 110

T + 110
.

For inviscid computations, we will use

α(T ) = 0.

On some component grids we discretize (2) by a sixth order accurate
finite difference scheme with summation-by-parts boundary modification of
the difference operators. This is discretization is the same as the base scheme
described in [6]. On other component grids we discretize the convective terms
in (2) by second order accurate TVD type scheme with the minmod limiter.
We use a fourth order Runge-Kutta method to advance the solution in time.
When the solution is in a steady (or quasi-steady) state, we time march
first with the TVD scheme on all grids, and later when the solution is fully
developed, switch to sixth order accurate scheme on some of the component
grids. When the discretizations are mixed with TVD approximations on
some grids and centered sixth order approximations on some grids, we use
the fourth order Runge-Kutta method on all grids.

5 Numerical tests

We present a few simple tests to demonstrate that the method works, and we
show the improvement in accuracy when switching to a high order centered
scheme on component grids that do not have any strong shocks.

We used the overlapping grid generator Xcog [4] to generate the two di-
mensional overlapping grids. For three space dimensions, we used the Ogen
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grid generator [3]. The grids were generated with an overlap that allows eval-
uation of nine point stencils, required for the eight order artificial dissipation
term in our sixth order accurate centered scheme. Unless otherwise stated,
the width of the interpolation stencil is five points, which means the interpo-
lation is fifth order accurate. The interpolation is explicit in all computations
below.

5.1 Accuracy of inviscid flow, error propagation from

a bow shock

We consider inviscid flow with free stream Mach number 3 past a cylinder
with radius 0.5. γ is 1.4. It is well known that the presence of a shock can
reduce the actual convergence rate when the grid spacing goes to zero to first
order even when using numerical method of formally high order of accuracy
[2]. We here study this effect in the context of high order methods with SBP
boundary conditions as described in [6].

The flow in the wake region depends strongly on the viscosity. Therefore,
we do not consider the wake for this inviscid computation, and we use the two
overlapping grids shown in Fig. 3. On the grid at the shock, we use a TVD
difference scheme, on the grid around the cylinder, we will use a 6th order
accurate scheme. For comparison we will also compute with a TVD difference
scheme on both grids. We will compare three different grid refinements, the
coarsest overlapping grid has 81×43 (cylinder) and 155×55 (shock) points.
The next finer grid has 161×85 and 301×109 points, and the finest grid has
321×169 and 601×217 points. Results on these three overlapping grids are
labeled by h, h/2, and h/4 in Figs. 4 and 5 below.

For inviscid flows, the entropy is constant on the streamlines, with pos-
sible jumps at the shocks. With knowledge of the free stream state, we can
compute analytically, by the Rankine-Hugoniot conditions, the entropy on
the streamline that coincides with y = 0 in the free stream. This streamline
passes normally through the bow shock, and attaches to the body of the
cylinder. We will use the error in entropy along the body as a measure of
accuracy.

In Fig. 4 we display the entropy error along the streamline for inviscid
flow with 2nd order TVD scheme at the shock grid and 6th order accurate
centered scheme. Fig. 4 shows that the error decreases with a first order
accurate convergence rate. This is most likely due to errors that propagate
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Figure 3: Two overlapping grids for inviscid computation (left). Computed
flow field at stream Mach number three (right).
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Figure 4: Relative error in entropy on cylinder as function of x. Mixed TVD
and 6th order. (81×43,155×55) grid points (blue), (161×85,301×109) grid
points (red), and (321×169,601×217) grid points (black).

from the bow shock, [2]. The behavior of the error with time is that a quasi
steady state is reached around the dimensionless time 10, where the error is
considerably smaller than the steady state errors shown in Fig. 4. The error
then increases to the level shown in Fig. 4 where a steady state seems to have
been reached. Nevertheless, the error in absolute terms is much smaller than
the error from using only the TVD difference scheme, shown in Fig. 5. The
computations in Fig. 5 were made with third order accurate interpolation
between the component grids. Furthermore, when solving the Navier-Stokes
equations we expect the physical viscosity to smooth the discontinuities to
make the effect of error propagation from shocks smaller.

We conclude that mixing a high order method with a TVD scheme gives
a significantly smaller error than obtained with only the TVD difference
scheme, but that the high order convergence rate is not obtained.

5.2 Accuracy of viscous flow, the skin friction coeffi-

cient

We consider viscous flow with free stream Mach number 3 and Reynolds
number 500 past a cylinder with radius 0.5. The Prandtl number is 0.72, γ
is 1.4, T∞ = 273.15K.

The domain is discretized by the overlapping grid configuration displayed
in Fig. 6. There are four grids, a base grid that covers the entire domain, a
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Figure 5: Relative error in entropy on cylinder as function of x. TVD
scheme on both component grids. (81×43,155×55) grid points (blue),
(161×85,301×109) grid points (red), and (321×169,601×217) grid points
(black).
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Figure 6: Overlapping grid domains used for computations with body fitted
grids.
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Coarse Medium Fine
base grid 100x136 200x272 200x272
wake grid 400x200 800x400 1200x600
shock grid 160x35 320x70 320x70
body grid 352x15 697x30 1387x60

Table 1: Number of grid points in composite grids for the three computations.
The body grid and the wake grid have cell aspect ratios close to one.

curved grid around the bow shock, a fine polar grid near the cylinder surface,
and a fine grid that covers the wake region.

We compare solution on three different composite grids, Coarse, Medium,
and Fine. Table 1 gives the number of grid points in these grids. The
thickness of the cylinder grid in the radial direction is 0.1, the number of grid
points are chosen such that the grid spacing is of the similar size radially
and tangentially. The size of the wake grid is such that the grid spacing
is of similar size as the spacing of the cylinder grid. The finest grid has
discretization step h = 1.7× 10−3 in the radial direction, which gives 26 grid
points over the width 1/

√
Re for Reynolds number 500.

Fig. 7 shows local Mach number contours of a solution computed on the
Medium grid. The grid boundaries are outlined in color (or gray). The
close up to the right shows good agreement of the contour lines between the
component grids. The structure in the wake, and the trailing discontinuities
can be completely resolved by the centered scheme and the physical viscosity,
no artificial dissipation is needed. This is not the case for the bow shock,
which is unresolved even on the finest grid. To assess the accuracy of the
computations, we plot the skin friction coefficient along the body,

Cf =
α(T )

Re

1
1
2
ρ∞U2

∞

∂V

∂n
, (3)

where V denotes the tangential velocity on the boundary.
Fig. 8 shows the skin friction coefficient on the three different grids when

a sixth order accurate method is used on all grids except on the grid around
the bow shock. Fig. 9 shows Cf for the same computations, but with the
TVD difference scheme on all grids. It is clearly seen that the mixed sixth
order/TVDmethod converges faster than the pure TVDmethod. Both meth-
ods converge to the same Cf curve.
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Figure 7: Solution on overlapping grids for Mach=3 and Re=500. Mach
number contours. 6th order accurate scheme on all grids except the bow
shock grid. Right plot is a close up of the region near the cylinder.
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5.3 Three dimensional example

We study the flow past a re-entry vehicle. The geometry with overlapping
grid system is outlined in Fig. 10. There are six grids in total. The Cartesian
background grid, in blue color in Fig. 10, has a fairly coarse grid spacing, The
body is defined by a spline curve, rotated around the x-axis (magenta) with
two orthographic cap grids (light blue and dark blue) that cover the polar
singularities. A cylindrical grid (green) together with a Cartesian grid (red)
that covers its polar singularity are inserted in the wake region. The grid
spacing is approximately 0.05 on the body and wake grids, about five times
larger on the Cartesian background grid. The flow conditions are the same
as used for the Fire II configuration in [5]. The free stream Mach number is
16 and the free stream temperature is 237 K.

A computed inviscid flow field is shown in Fig. 11.

6 Conclusions

We have described an extension of our previously developed high order
schemes to geometries discretized by overlapping grids. We have shown
example computations where high order schemes are used on some of the
component grids, and shock capturing schemes are used on other component
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Figure 10: Overlapping grid system for re-entry vehicle computation.
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Figure 11: Density color levels, inviscid computation.

16



grids. We have given examples that show that the error in high speed flow
computations, is significantly smaller when high order schemes are used on
some component grids.

Many questions regarding error propagation for shock problems remains
to be answered. Future plans include a more extensive study of such phe-
nomena in practical settings. For example it would be possible to use a
higher order shock capturing scheme (e.g., a WENO method) around the
bow shock.

The three dimensional re-entry computations will be extended with the
objective to study the flow, and how the flow is affected by the order of
accuracy of the scheme, in the wake region for moderate and high Reynolds
numbers.
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